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a b s t r a c t

In this paper, we study the Cramér–Rao Lower Bound (CRLB) in single-hop sensor localization using
measurements derived from received signal strength (RSS), time of arrival (TOA) andbearing, respectively,
from a novel perspective. Differently from the existing work, we use a statistical sensor–anchor geometry
modeling method, with the result that the trace of the associated CRLB matrix, as a scalar metric for
performance limits of sensor localization, becomes a random variable. Given a probabilitymeasure for the
sensor–anchor geometry, the statistical properties of the metric are analyzed to demonstrate properties
of sensor localization. Using the Central Limit Theorems for U-statistics, we show that as the number of
anchors increases, themetric is asymptotically normal in the RSS/bearing case, and converges to a random
variable which is an affine transformation of a chi-square random variable of degree 2 in the TOA case.
We provide formulas quantitatively describing the relationship among the mean and standard deviation
of the metric, the number of the anchors, the parameters of communication channels, the noise statistics
in measurements and the spatial distribution of the anchors. These formulas, though asymptotic in the
number of the anchors, inmany cases turn out to be remarkably accurate in predicting performance limits,
even if the number is small. Simulations are carried out to confirm our results.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Wireless sensor networks have a wide range of military and
civilian applications nowadays, in which location information
plays a vital role for it is useful to report the geographic origin
of events, to assist in target tracking, to achieve geographically
aware routing, to manage sensor networks, and so on (Akyildiz,
Su, Sankarasubramaniam, & Cayirci, 2002). A sensor network
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generally consists of two types of nodes: anchors and sensors.
Anchor locations are known a priori through GPS or manual
configuration, while sensor locations are not known and need to
be determined through the procedures of sensor localization; see
e.g. Cao, Anderson, and Morse (2006).

Single-hop sensor localization means that each sensor can de-
termine its own location using direct measurements from nearby
anchors, and can be found in many practical localization scenar-
ios, such as source localization and target tracking. Effectively,
it is used too in simultaneous localization and mapping (SLAM)
(Dissanayake, Newman, Clark, Durrant-Whyte, & Csorba, 2001),
where a mobile robot equipped with a GPS receiver moves in a
2-dimensional (2-D) environment, measures relative location in-
formation to various objects, and then determines the locations of
these objects; herein, the positions where the robot makes mea-
surements can be abstracted as anchors, such that the localiza-
tion procedure is single-hop. In Pathirana, Bulusu, Savkin, and Jha
(2005), a mobile anchor(s) is used to assist in sensor localization
by providing relative locationmeasurements to sensors atmultiple
positions, which is evidently single-hop. Therefore, it is especially
meaningful to study single-hop sensor localization.

Apart from localization algorithms, determining the perfor-
mance limit of sensor localization, namely the lowest achievable
error bound for location estimates, also attracts much attention.

http://dx.doi.org/10.1016/j.automatica.2012.11.011
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On the one hand, it provides a measure of theoretically optimal
performance regardless of sensor localization algorithms; on the
other hand, it reflects fundamentals of sensor localization. Since
the Cramér–Rao lower bound (CRLB) establishes a lower bound on
the variance for any unbiased estimator, it has been widely used
in the performance limit analysis of sensor localization; see e.g.
Chang and Sahai (2004), and Patwari, Hero, Perkins, Correal, and
O’Dea (2003).

For single-hop sensor localization in a 2-D plane, the CRLB
is a 2 × 2 matrix and dependent on multiple factors, including
measuring techniques, noise statistics of measurements, and
sensor–anchor geometries (i.e. node coordinates). Since the trace
of the CRLB matrix is the minimum mean square estimation error
(MSE), it is often used as a scalar metric for the performance limit
(Chang & Sahai, 2004; Patwari et al., 2003). Provided that the
measuring technique and the noise statistics of measurements
are both known, the scalar metric can be regarded as a function
of the sensor–anchor geometry. A key problem arising is that of
minimizing the scalar metric, equivalent to identifying optimal
sensor–anchor geometries for sensor localization, and has been
widely studied (Bishop, Fidan, Anderson, Dogcancay, & Pathirana,
2010; Martinez & Bullo, 2006). The metric can also give valuable
qualitative information. It can be very large, implying that a
localization problem is badly conditioned (e.g. the anchors are
nearly collinear with the sensor) and localization algorithms
almost fail. Evidently, we should avoid the situations where the
scalar metric takes large values. In short, the CRLB provides much
useful information regarding sensor localization.

The conventional CRLB studies assume a deterministic sen-
sor–anchor geometry. But, the sensor–anchor geometry is usu-
ally unknown prior to system deployment, so that it is difficult
to evaluate the localization performance. Yet, a probability mea-
sure for the sensor–anchor geometry might be available. It is in-
deed natural to model the senor–anchor geometry by assuming a
random and uniform distribution for the anchors’ positions, and
consequently, the scalar metric itself becomes random and offers
a broad, statistical view on the localization performance, in con-
trast to one deterministic quantity for a given sensor–anchor ge-
ometry. For instance, if the scalar metric hardly ever takes large
values, there is less reason to worry about the sensor–anchor ge-
ometry; otherwise, one must impose proper control on it. Ad-
ditionally, the mean of the scalar metric further establishes a
lower limit on the performance of single-hop sensor localization
given a fixed number of anchors with undetermined locations;
in the situations where sensor–anchor geometries are unknown,
e.g. prior to system deployment, this performance limit is certainly
useful.

The novel statistical sensor–anchor geometrymodelingmethod
not only provides insights into single-hop sensor localization and
in turn guides us in the design and deployment of wireless sensor
networks, but also as a prototype paves the way for dealing with
more complicated scenarios of sensor localization. In a mobile
environment, as may arise with ad-hoc networks, SLAM, mobile
anchors assisting in sensor localization and so on, it is trivial to
concentrate on localization performance in one particular time
instant, whereas it is evidently more attractive to acquire the
knowledge about the average localization performance over a
period of time and/or in a wide region; hopefully, these challenges
can be addressed by the statistical modeling method. In summary,
statistical sensor–anchor geometrymodeling is a powerfulmethod
for investigating the performance limit of sensor localization.
To the best of our knowledge, this method has never been
considered.

In this paper, we consider single-hop sensor localization based
on received signal strength (RSS), time of arrival (TOA) and
bearing, respectively, and show that the scalar metric in each
Fig. 1. Single-hop sensor localization.

case is essentially a function of U-statistics (see Section 2.2 for
further details). Based on the theory of U-statistics, we make the
following contributions: (i) it is proved that as the number of the
anchors increases, the scalar metric is asymptotically normal in the
RSS/bearing case and converges to a random variable (RV) which is
an affine transformation of a chi-square RV of degree 2 in the TOA
case; (ii) the convergence rate in the RSS/bearing case is shown
to be as fast as O(n−

1
2 ), where n is the number of the anchors;

(iii) the asymptotic formulas for the mean and standard deviation
of the scalar metric are derived in both cases; (iv) last but not
least, these formulas are analyzed to demonstrate some properties
of sensor localization. All conclusions are confirmed by extensive
simulations.

The remainder of this paper is organized as follows. The next
section formulates the problem of single-hop RSS-based sensor
localization and presents the main results. Section 3 extends our
study into bearing-only localization and TOA-based localization.
Finally, we conclude this paper and shed light on future work in
Section 4.

Throughout this paper, we use the following mathematical
notation: (·)T denotes the transpose of a matrix or a vector;
Tr(·) denotes the trace of a square matrix; Pr{·} denotes the
probability of an event; Ex(·) and Stdx(·) denote the statistical
expectation and standard deviationwith respect to the subscripted
RV x.

2. Results in RSS-based localization

2.1. Problem formulation

In a 2-D plane, consider a single sensor (or source, target)
located at the origin and n measurements made from this sensor
to n anchors at known locations {ai, i = 1, . . . , n}, as illustrated in
Fig. 1. Herewe shall consider RSSmeasurements, but later distance
(TOA) or angle measurements as alternatives. The true distance
from the sensor to the i-th anchor is denoted by di; the true angle
subtended by ai and the positive x-axis is denoted by αi. The task of
single-hop sensor localization is to find an estimate of the sensor
location using {ai, i = 1, . . . , n} and the associated distance or
angle measurements.

Denote by {Pi, i = 1, . . . , n} the RSSmeasurements transmitted
by the single sensor (or by the n anchors with the same
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transmission power) at the n anchors (or at the single sensor).
Then, we assume the following.

Assumption 1. The RSS measurements {Pi, i = 1, . . . , n} satisfy
the log-normal (shadowing) model and are statistically indepen-
dent.

Assumption 1 is commonly made in studies on RSS-based
sensor localization (e.g. Patwari et al. (2003), and So and Lin
(2011)). This assumption is two-fold: the first aspect postulates
the log-normal model which has been widely verified (e.g. Patwari
et al. (2003)) and the second aspect postulates the independence
between RSS measurements which is verified in Kaemarungsi
and Krishnamurthy (2012). As pointed out in Patwari, Wang, and
O’Dea (2002), given two spatially close anchors, the statistical
independence between the associated twoRSSmeasurementsmay
be compromised, because an obstruction such as a wall, furniture,
tree, or building may cause similar shadowing, and hence, the
second aspect would not properly hold in this case.

With the RSS measurements, one can obtain distance measure-
ments (Chitte, Dasgupta, & Ding, 2009) to estimate the sensor
location. Regarding the location estimation problem, the Fisher in-
formation matrix (FIM) FRSS is formulated as follows:

FRSS = b


n

i=1

cos2 αi

d2i

n
i=1

cosαi sinαi

d2i
n

i=1

cosαi sinαi

d2i

n
i=1

sin2 αi

d2i

 , (1)

where b =


10α

σdB ln 10

2
, α is the path-loss exponent and σdB is

the standard deviation of the shadowing effect in the log-normal
model. A detailed derivation can be found in Patwari et al. (2003).

Let (x̂, ŷ) be the unbiased sensor location estimate and CRSS be
the CRLB on the covariance of (x̂, ŷ). If FRSS is non-singular, CRSS
equals F−1

RSS and satisfies

Tr(CRSS) ≤ Eυ(x̂2 + ŷ2), (2)

where υ = {Pi, i = 1, . . . , n}. As such, Tr(CRSS) is the scalar metric
for the performance limit with the expression:

Tr(CRSS) =
1
b


n

i=1

1
d2i

1≤i<j≤n

sin2(αi−αj)

d2i d
2
j

 . (3)

Next, we define the random sensor–anchor geometry model by
assuming the following.

Assumption 2. The n anchors are randomly and uniformly dis-
tributed inside an annulus centered at the sensor and defined by
radii R0 and R (R > R0 > 0).

Here, R is the upper bound on practical distances used in the
wireless communication system and is normally restricted by
the physical factors determining path-loss attenuations; R0 is the
reference distance defined in the log-normalmodel and is virtually
the lower bound on distances that can be measured by using the
log-normal model. For example, based on measurement studies,
the reference distance R0 for practical systems using low-gain
antennas in the 1–2 GHz region is typically chosen to be 1 m in
indoor environments and 0.1 km or 1 km in outdoor environments
(Rappaport, 2001).

By Assumption 2, each possible sensor–anchor geometry is
equi-probable, in the sense that the sensor–anchor geometry
follows a ‘‘uniform’’ distribution. As a result, ω = {di, αi, i =

1, . . . , n} are mutually independent RVs and the scalar metric
Tr(CRSS) becomes random.

2.2. Results

In Hoeffding (1948), U-statistics (which crucially obey a central
limit theorem) are defined as follows.

Definition 1. Let {Xi, i = 1, . . . , n} be i.i.d. p-dimensional random
vectors. Let h(x1, . . . , xr) be a Borel function on Rr×p for a given
positive integer r (≤ n) and be symmetric in its arguments. A U-
statistic Un is defined by

Un =
r!(n − r)!

n!


1≤i1<···<ir≤n

h(Xi1 , . . . , Xir ) (4)

and h(x1, . . . , xr) is called the kernel of Un.

Obviously, Tr(CRSS) involves the ratio of two U-statistics, which
inspires us to study Tr(CRSS) through an asymptotic analysis based
on the theory of U-statistics. At first, we obtain the following
lemma for processing the ratio of two U-statistics (Due to the page
limit, we cannot provide the proofs for the following lemma and
all the other theorems in this paper; all these proofs can be found
in http://arxiv.org/abs/1109.2984v1).

Lemma 1. Given two sequences of i.i.d. RVs with bounded values:
{X (1)

i , i = 1, . . . , n} and {X (2)
i , i = 1, . . . , n}, which are mutually

independent, define vectors Xi = [X (1)
i X (2)

i ]
T (i = 1, . . . , n) and

two U-statistics

Tn =
1
n

n
i=1

X (1)
i , (5)

Sn =
2

n(n − 1)


1≤i<j≤n

X (1)
i X (1)

j sin2(X (2)
i − X (2)

j ). (6)

Then, (a)

Tn
Sn

=
1

m1m2
+

2σ 2
1

nm3
1m2

+ Mn + Rn (7)

where m1 = E(X (1)
1 ), σ1 = Std(X (1)

1 ), m2 = E(sin2(X (2)
1 − X (2)

2 )),
and

Mn =
2
n

n
i=1

g1(Xi) +
2

n(n − 1)


1≤i<j≤n

g2(Xi, Xj), (8)

g1(Xi) =
m1 − X (1)

i

2m2
1m2

, (9)

g2(Xi, Xj) =
1

m1m2
−

X (1)
i + X (1)

j

m2
1m2

+
2X (1)

i X (1)
j

m3
1m2

−
X (1)
i X (1)

j sin2(X (2)
i − X (2)

j )

m3
1m

2
2

; (10)

(b) for any ε > 0, as n → ∞, the remainder term Rn satisfies

Pr {|nRn| ≥ ε} = O(n−1), (11)
Pr {|n(ln n)Rn| ≥ ε} = o(1). (12)

Lemma 1 allows us to expand Tr(CRSS). By letting X (1)
i =

1
d2i

and

X (2)
i = αi, we can derivem2 = 0.5, and

http://arxiv.org/1109.2984v1
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m1 = 2


ln R

R0

R2 − R2
0


, (13)

σ1 =

 1
R2
0R2

−


2 ln R

R0

R2 − R2
0

2

. (14)

Then, one of our main results is further summarized as follows.

Theorem 2. Define a sequence of RVs

Wn =

√
n(n − 1)bm2

1

4σ1


Tr(CRSS) −

√
nm1

σ1
−

2σ1
√
nm1

(15)

where b and Tr(CRSS) are defined in Section 2.1, and m1 and σ1
are defined by (13) and (14). Then, under Assumptions 1 and 2, Wn
converges in distribution to a standard normal RV as n → ∞.

Remark 3. In view of the affine relationship between Wn and
Tr(CRSS), Tr(CRSS) is asymptotically normal. Given a sufficiently
large n, the distribution of Tr(CRSS) can be approximated by the
following normal distribution

N

 4 +
8σ 2

1
nm2

1

(n − 1)bm1
,


4σ1

√
n(n − 1)bm2

1

2

 , (16)

and furthermore, the moments of Tr(CRSS) can be approximated as
follows:

Eω(Tr(CRSS)) ≈

4 +
8σ 2

1
nm2

1

(n − 1)bm1
, (17)

Stdω(Tr(CRSS)) ≈
4σ1

√
n(n − 1)bm2

1
. (18)

With (16)–(18), we can quantitatively analyze the localization
performance, e.g. (a) computing the probability that Tr(CRSS) is
below a given threshold for a known value of n, (b) determining
a threshold such that Tr(CRSS) is below the threshold with a certain
confidence level, (c) determining theminimum n such that Tr(CRSS)
is below a given threshold with a certain confidence level, and
(d) computing the spatial average of the localization performance
given a known value of n, which is undoubtedly helpful for the
design and deployment of wireless sensor networks.

A natural question arises as to how large n should be to obtain a
good approximation; this gives rise to the convergence rate study.
The following theorem describes the convergence rate ofWn.

Theorem 4. Under Assumptions 1 and 2, as n → ∞,

sup
x

|Fn(x) − Φ(x)|

≤


ν3 +

2σ 4
1

m1

6σ 3
1

 (x2 − 1)e−
x2
2

√
2π

 n−
1
2 + O(n−1) (19)

where Fn(x) and Φ(x) are the distribution functions (DFs) of Wn and
the standard normal RV, ν3 = Eω((1/d21 − m1)

3), and the other
notation are the same as in Theorem 2.

Remark 5. It follows that as n → ∞, the density ofWn converges
to standard normality with a relatively fast rate, i.e. O(n−

1
2 ).

Additionally, it can be verified that the coefficient associated with
Fig. 2. The DFs and PDFs of Tr(CRSS) with α = 2.3, σdB = 3.92, R0 = 1 m and
R = 10 m.

n−
1
2 in (19) is a function of R

R0
; that is to say, the convergence rate is

not determined by the individual values of R0 and R, but only by R
R0
.

To conduct simulations to verify Theorem 2, the parameters
describing a typical wireless channel, i.e. α, σdB and R0, are set
as 2.3, 3.92 and 1 m, respectively, as measured in Patwari et al.
(2003). TheDFs and probability density functions (PDFs) of Tr(CRSS)
from both simulations (with the legend ‘‘Simulation’’) and (16)
(with the legend ‘‘Formula’’) are plotted in Fig. 2. The curves
from simulations are obtained by generating 100,000 single-hop
sensor localization scenarios, evaluating the CRLB in each scenario,
and then computing the DFs and PDFs using the Matlab routine
‘‘ksdensity’’.

The gradually diminishing discrepancy with increasing n
between the pair of curves in Fig. 2 is consistent with and in turn
confirms Theorem 2. In addition, with n increasing, the value range
of Tr(CRSS) becomes narrower (or in other words, the dispersion
of the DF of Tr(CRSS) reduces), implying that the sensitivity of
localization performance to sensor–anchor geometries reduces;
hence, one should be careful about sensor–anchor geometries
when n is small, but has less reason to worry about them when
n is large.

Remark 6. As illustrated in Fig. 2, when n ≥ 10, (16) achieves
good performance and meanwhile (17) and (18) are applicable,
which enables us to analytically study the properties of sensor
localization. (Since Eω(Tr(CRSS)) and Stdω(Tr(CRSS)) in (17) and (18)
normalized by R2 (or R2

0) are dependent on R
R0
, we simplify the

discussion involving both R0 and R by letting R0 = 1 m and only
concentrating on R.)
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(1) From (17), Eω(Tr(CRSS)) is inversely proportional to n, and
thus a critical value n∗ depending on R0, R, σdB and α
can be determined, such that having more anchors than
n∗ contributes little to improving the quality of sensor
localization.

(2) By (17) and (18), Eω(Tr(CRSS)) and Stdω(Tr(CRSS)) both decrease
with R decreasing; the reason is that long distance measure-
ments from RSS suffer greater errors, and thus produce worse
localization performance. Therefore, distance measurements
froma sensor are bettermade at locations as close to the sensor
as possible.

(3) It follows from (17) that using more distance measurements
spread over a wide range is not necessarily better than using
fewer distance measurements but spread in a narrow range
in terms of Eω(Tr(CRSS)). Hence, tradeoff should be made
between the number of the anchors (i.e. n) and their spreading
determined by R0, R.

(4) Though the impacts of increasing n and R are discussed
separately, the variables are correlated in some situations,
and so the impacts are related. This is because increasing
the transmission power enlarges the node communication
coverage, and both n and R tend to rise. However, a positive
impact arises for Tr(CRSS) as its mean will definitely decrease
according to Patwari et al. (2003).

(5) Since the coefficient of variation of a RV, defined to be the
ratio of its standard deviation to its mean, is a normalized
measure of dispersion of its distribution, such a coefficient is
indeed a metric for the sensitivity of localization performance
to sensor–anchor geometries. By (17) and (18), the coefficient
associatedwith Tr(CRSS) has the order ofO(n−

1
2 ), implying that

the sensitivity dies out with n going to infinity.

3. Expansion in bearing-only localization and TOA-based local-
ization

In this section, we expand our study into bearing-only
localization and TOA-based localization.

3.1. Results in bearing-only localization

In bearing-only localization, bearing measurements associated
with one sensor and at least two anchors noncollinear with the
sensor are required to determine the sensor location. We still
consider the sensor and n (≥ 2) anchors in Fig. 1, but {αi, i =

1, . . . , n} are assumed to be measured as bearings, because this
set of measurements is equivalent to the set of real bearing
measurements as far as our study is concerned. Henceforth, we
make the following assumption as is commonly used in the studies
on bearing-only localization (Dogcancay, 2005; Gadre, Roan, &
Stilwell, 2008) as well as is also justified in Gadre et al. (2008).

Assumption 3. The bearing measurements are statistically inde-
pendent and Gaussian with means {αi, i = 1, . . . , n} and the same
variance σ 2

α .

To model a random sensor–anchor geometry in bearing-only
localization, wemake the same assumption as Assumption 2. Here,
R0 is not the reference distance any more, but the lower bound on
practical distances from the sensor to anchors. Define FB to be the
FIM in bearing-only localization, and from Bishop et al. (2010), we
have

FB =
1
σ 2

α


n

i=1

cos2 αi

d2i

n
i=1

−
cosαi sinαi

d2i
n

i=1

−
cosαi sinαi

d2i

n
i=1

sin2 αi

d2i

 . (20)
Remark 7. Obviously, on replacing 1
σ 2
α
by b, FB will have the same

form as the FIM in the RSS case, i.e. FRSS in (1). Hence, all the
conclusions about Tr(CRSS) except those relevant to b are still
correct in bearing-only localization under Assumption 3.

3.2. Results in TOA-based localization

By the relation between signal propagation speed in a medium,
the travel time of a radio signal (i.e. TOA) is a measure for
the distance between the transmitter and the receiver. Denote
by {Ti, i = 1, . . . , n} the measured TOA between the sensor
and n anchors. Based on the experiments in real environments
(Mazomenos, De Jager, Reeve, & White, 2011; Patwari et al., 2003)
and as is common in studies on TOA-based localization under line-
of-sight conditions (Xu, Ding, & Dasgupta, 2011; Zhu&Ding, 2010),
we assume the following.

Assumption 4. {Ti, i = 1, . . . , n} are statistically independent
and Gaussian with means {

di
c , i = 1, . . . , n} (c is the speed of

propagation) and the same variance σ 2
T .

Because the TOA measurement model is still valid when the
practical distance di is 0, we do not impose a lower bound on
practical distances as we do in the RSS case, and simply make
the following assumption to model a random sensor–anchor
geometry.

Assumption 5. The n anchors are randomly and uniformly de-
ployed within a circle of radius R (R > 0) centered at the sensor.

Then, {di, i = 1, . . . , n} and {αi, i = 1, . . . , n} are mutually
independent and we can obtain the FIM and the scalar metric as
follows:

FTOA =
1

σ 2
T c2


n

i=1

cos2 αi

n
i=1

cosαi sinαi

n
i=1

cosαi sinαi

n
i=1

sin2 αi

 , (21)

Tr(CTOA) =
σ 2
T c

2n
1≤i<j≤n

sin2(αi − αj)
(22)

where FTOA and CTOA are the FIM and CRLB respectively in the TOA
case.

According to Lemma 1, by letting X (1)
i = 1 and X (2)

i = αi with
i = 1, . . . , n, we can derive the following theorem.

Theorem 8. Define a sequence of RVs

Vn =


n(n − 1)
2σ 2

T c2


Tr(CTOA) − 2n + 2 (23)

where σT is defined in Assumption 4 and Tr(CTOA) is defined by (22).
Under Assumptions 4 and 5, Vn converges in distribution to a chi-
square RV of degree 2 as n → ∞.

Remark 9. According to Theorem 8, if n is sufficiently large, the
PDF of Tr(CTOA) can be approximated by

n(n − 1)
2σ 2

T c2
fχ


n(n − 1)
2σ 2

T c2
x − 2n + 2


, (24)

where fχ (·) is the PDF of the chi-square RV of degree 2, and
moreover, the moments of Tr(CTOA) can be approximated as
follows,
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Fig. 3. The DFs and PDFs of Tr(CTOA) with R = 10 m and σT c = 1 m.

Eω(Tr(CTOA)) ≈
4σ 2

T c
2

n − 1
, (25)

Stdω(Tr(CTOA)) ≈
4σ 2

T c
2

n(n − 1)
. (26)

We let σT c = 1m asmeasured in Patwari et al. (2003), and plot the
DFs and PDFs of Tr(CTOA) from both simulations (with the legend
‘‘Simulation’’) and (24) (with the legend ‘‘Formula’’) in Fig. 3. The
discrepancy between the pair of curves is not as obvious as in
the RSS case, and also vanishes with n increasing, which confirms
Theorem 8.

Remark 10. Since (24) is extraordinarily accurate when n ≥ 10,
we analyze the properties of sensor localization using (25) and
(26) as in the RSS case. First, it is shown by (25) that Eω(Tr(CTOA))
is inversely proportional to n, and a critical value n∗ differing
from σT c can be determined, such that having more anchors than
n∗ does not distinctly improve the quality of sensor localization.
Second, the coefficient of variation for Tr(CTOA) has the order of
O(n−1), implying that TOA-based localization is not as sensitive to
sensor–anchor geometries as RSS-based localization.

4. Conclusion and future work

In this paper, we investigated the performance limit of single-
hop sensor localization using RSS, TOA or bearing measurements
by statistical sensor–anchor geometry modeling. That is, given
a probability measure for the sensor–anchor geometry, the
scalar metric for the performance limit, i.e. the trace of the
associated CRLB matrix, becomes random. We obtained formulas
expressing the asymptotic behavior of the scalar metric in terms
of distribution, mean and standard deviation. Specifically, as
the number of the anchors goes to infinity, the scalar metric
in the RSS/bearing case is asymptotically normal and its rate
of convergence to normality was also derived; in the TOA
case, the scalar metric converges to a RV which is an affine
transformation of a chi-square RV of degree 2. Although these
formulas are asymptotic in the number of the anchors, extensive
simulations show that they are remarkably accurate in predicting
the performance limit of sensor localization even if the number
of the anchors is fairly small. In addition, we demonstrate some
general properties of sensor localization based on the mean and
standard deviation of the scalar metric.

Considering the similarities between the models for bearing
measurements and angle of arrival (AOA) measurements, we can
expand the conclusions in the RSS/bearing case to AOA-based
localization. Furthermore, distance measurements in range-only
localization are often modeled to be mutually independent and
Gaussian (Bishop et al., 2010), which is the same as occurs with
TOA measurements, and thus, it is straightforward to expand the
conclusions in the TOA case to range-only localization. In future
work, we may expand our study into 3-dimensional space and
multi-hop sensor localization.
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